Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Authors

Abstract:

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural networks were used to recognize the pattern in control charts in several research. Two procedures were used based on the raw data and feature for training and application of neural network. This paper presented new statistical features besides the investigation of their efficiency by application of a neural network. The simulation results demonstrated the positive effect of the presented statistical feature on neural network performance.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characterist...

full text

Control Chart Pattern Recognition Using Artificial Neural Networks

Precise and fast control chart pattern (CCP) recognition is important for monitoring process environments to achieve appropriate control and to produce high quality products. CCPs can exhibit six types of pattern: normal, cyclic, increasing trend, decreasing trend, upward shift and downward shift. Except for normal patterns, all other patterns indicate that the process being monitored is not fu...

full text

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

full text

Control Chart Recognition Patterns using Fuzzy Rule-Based System

Control Chart Patterns (CCPs) recognition is one the most important concepts in control chart application. Relating the patterns exhibited on the control chart to assignable causes is an ambiguous and vague task especially when multiple patterns co-exist. In this study, a fuzzy rule-based system is developed for X ̅ control charts to prioritize the control chart causes based on the accumulated e...

full text

Issues in Development of Artificial Neural Network-Based Control Chart Pattern Recognition Schemes

Control chart pattern recognition has become an active area of research since late 1980s. Much progress has been made, in which there are trends to heighten the performance of artificial neural network (ANN)-based control chart pattern recognition schemes through feature-based and wavelet-denoise input representation techniques, and through modular and integrated recognizer designs. There is al...

full text

Facial Expression Recognition System using Statistical Feature and Neural Network

In this paper, a new technique for facial expression recognition is proposed which uses the statistical feature of the whole face and classify the expression using neural network classifier. When the face image is input, region of interest (ROI) is being obtained to evaluate the statistical feature of the face. Using these, features we classify the face into one of the seven different expressio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 9

pages  1372- 1380

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023